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Reference-wave solutions for the high-frequency field in random media

Reuven Mazar* and Alexander Bronshtein
Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, I
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Ray trajectories, as has been shown in the recently formulated stochastic geometrical theory of diffraction,
play an important role in determining the propagation properties of high-frequency wave fields and their
statistical measures in complicated random environments. The field at the observer can be presented as the
superposition of a variety of field species arriving at the observer along multiple ray trajectories resulting from
boundaries and scattering centers embedded into the random medium. In such situations the intensity products
from which the average intensity measures can be constructed and which, in general, are presented as even
products of the total field, will contain sums of products of mixed field species arriving along different ray
trajectories. For computations of the statistical measures of the field it is desirable, therefore, to possess a
solution for the high-frequency field propagating along an isolated ray trajectory. The main concern of this
work is the construction of high-frequency asymptotic propagators, relating the values of the random field and
its statistical measures at some observation plane to their source~actual or virtual! distributions at the initial
plane. For this reason a reference-wave method was developed to obtain an approximate solution of the
parabolic wave equation in a homogeneous background random medium.

DOI: 10.1103/PhysRevE.65.066617 PACS number~s!: 46.65.1g, 05.40.2a, 43.30.1m, 92.10.Vz
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I. INTRODUCTION

Wave propagation taking place either in the natural en
ronments or in the artificial structures is usually accom
nied by random phenomena caused by the fluctuations o
medium’s parameters. While such problems arise in vari
areas of physics, the most appreciable theoretical and ex
mental achievements have been made in the case of con
ously fluctuating media when the medium’s fluctuations c
be considered as large-scale compared to the radiation w
length. These achievements have been stimulated by
practical importance of such topics as laser beam prop
tion in a turbulent atmosphere and acoustic wave propa
tion in a fluctuating underwater sound channel. At t
present time the subject is supported by a wide theore
background that includes sophisticated analytical and
merical methods described and summarized in a numbe
monographs~we mention only a few of them@1–3#!. In the
line-of-sight case when the radiation from the source
proaches the observer along a straight line~or a single curved
ray in the case of an inhomogeneous background medi!
the problem can be described by studying the propagatio
the statistical moments of the field. The most important
the second-order moment related to the coherence prope
and average intensity of the field and the fourth-order m
ment related to the correlation properties of the field int
sity.

An increase in the propagation ranges and the nee
operate with fields having greater spatial and angular ext
require that the complexity of the propagating environme
and the resulting multipath effects induced by the scatte
of the field by boundaries and scattering centers to be
counted for. The locations of such obstacles can be ei
deterministic or random. In the latter case additional stati
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cal treatment is required. Investigations of the field struct
in complicated environments becomes especially impor
in the modeling of modern mobile and satellite communic
tion channels operating in the millimeter wave range. T
prescriptions of how to incorporate all these effects into s
chastic propagation are given in a stochastic geometr
theory of diffraction~SGTD! @4,5# which has been especiall
formulated in order to deal with such types of phenome
The SGTD is based on the localization concept according
which the high-frequency fields are concentrated along
ray trajectories specified by the deterministic GTD, an
therefore, can be transported along these trajectories by
ing account of the effect of random inhomogeneities on th
phase and the amplitude. As in the deterministic GTD,
field at the observer can comprise a number of field spe
arriving along different ray trajectories resulting from th
reflection, refraction, and~or! diffraction of the local plane-
wave fields by boundaries, inhomogeneities, and~or! scatter-
ing centers@6,7#. As in the line-of-sight case the statistic
properties of the observed intensity patterns can be der
from the analysis of the statistical intensity moments. Ho
ever because of the multipath arrival, the expressions for
intensity moments, being even order products of the to
field at the observer, will contain odd products of the se
rate ray-field species. Moreover, the radiation portions pro
gating along different rays can traverse the same spatia
gions, which requires consideration of their correlatio
Therefore, it would be useful to possess a field solution t
accounts for the information accumulated by the propaga
field along its propagation path. The derivation of such
solution is one of the main concerns of this work. Our so
tion strategy is based on the development of a refere
wave method~RWM!. The methodology is based on definin
a paired field measure as a product of an unknown fi
propagating in a disturbed medium and its a complex con
gate component propagating in a medium without rand
fluctuations. The solution of the deterministic equation c
©2002 The American Physical Society17-1
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be usually obtained by conventional methods. Defin
paired field measures and extensions to higher dimensi
spaces is stimulated by the advantages that they open in
lyzing field structure. In particular, this allows us to de
simultaneously with location in a configuration space
gether with defining the ray slope and the spectral proper
of the radiation. In addition, performing a proper scali
gives us the ability to emphasize ‘‘slow’’ and ‘‘fast’’ vari
ables and to define expansion parameters with the su
quent application of sophisticated asymptotic techniq
@8–11#. Once a solution of the equation for the paired fie
measure is obtained, the solution of the unknown field can
easily extracted from the paired solution in an explicit fo
if one knows the solution of the deterministic compone
The reference-wave method has already been applied
cessfully to the parabolic-type equations@12#.

II. THE REFERENCE-WAVE SOLUTION

The starting point of our analysis is the scalar Helmho
equation for the time-harmonic fieldU(R):

¹2U~R!1k2N2~R!U~R!50. ~1!

HereR measures the location in three-dimensional space
can be represented in different curvilinear coordinate s
tems,N(R)511n(R) is the refractive index of the medium
which consists of a unit background part and a weak rand
part n(R), (un(R)u!1).

As mentioned above, propagation of high-frequency tim
harmonic signals in spatially inhomogeneous media ta
place along the geometrical ray trajectories representing
paths of energy flux transfer. Our concern is to construc
solution for the high-frequency random field, which is su
posed to contain information about the medium refract
index along the propagation path. In this work we restr
ourselves to a homogeneous background random med
and base our solution on the parabolic approximation alon
straight background ray thereby extracting from the hig
frequency field the main phase variation along some re
ence ray path@1–3#:

U~r,s!5u~r,s!exp~ iks!. ~2!

Here the propagation of the random parabolic wave am
tudeu(r,s) is described in a ray-centered coordinate syst
R5$r,s%, where the two-dimensional radius-vectorr mea-
sures the location in a rectangular coordinate system per
dicular to the straight reference ray and the coordinates
measures the range along that ray~for definition of such
coordinate system see, for example, Refs.@4# and @5# and
also one of the ray trajectories in Figs. 1 and 2!. Substituting
Eq. ~2! into Eq. ~1! and neglecting the ‘‘slow’’ range deriva
tives, we arrive at the parabolic equation for the propaga
of the reduced wave amplitude:

]g1~r1 ,sur10,s0!

]s
5

i

2k
¹ r1

2 g1~r1 ,sur10,s0!

1 ikn~r1 ,s!g1~r1 ,sur10,s0!, ~3!
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which is solved with the initial condition:

g1~r1 ,s0ur10,s0!5d~r12r10!. ~3a!

Since Eq.~3! contains a random functionn(r ,s), its solu-
tions will be also random functions. Originally the develo
ment of solutions of the SGTD propagators was closely
lated to the paired field measures. The fact that
propagation of these measures is described in an exte
space allowed us to emphasize ‘‘slow’’ and ‘‘fast’’ variable
with the possibility of applying sophisticated multisca
asymptotic techniques@8–11#. Here, we suggest the applica
tion of similar methods in order to extract the solution for t
random field itself. In parallel to the propagation in a rando
medium, we consider also the propagation of a determini
wave in a medium in the absence of the refractive ind
fluctuations. This is described by the equation:

FIG. 1. Transformation to reference and displacement coo
nates, Eq.~7!.

FIG. 2. Transformation to center of mass and difference coo
nates, Eq.~25!.
7-2
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]u2~r2 ,s!

]s
5

i

2k
¹ r2

2 u2~r2 ,s!, u2~r2 ,s0!5u0~r2!. ~4!

Defining a product

F~r1 ,r2 ,s!5g1~r1 ,sur10,s0!u2* ~r2 ,s!, ~5!

and using the standard procedure, we arrive at the equa
for F:

]F~r1 ,r2 ,s!

]s
5

i

2k
~¹ r1

2 2¹ r2

2 !F~r1 ,r2 ,s!

1 ikn~r1 ,s!F~r1 ,r2 ,s!, ~6!

F~r1 ,r2 ,s0!5d~r12r10!u20~r2!. ~6a!

Defining the productF(r1 ,r2 ,s) in Eq. ~5! allows to em-
phasize the phase differences between the desired sol
for g1(r1 ,s0ur10,s) and the reference waveu2(r2 ,s). As
will be shown later, the propagation of the reference wav
not necessarily carried along the deterministic ray trajec
ries. It can be carried also along the random rays determ
by the random medium. In order to emphasize ‘‘slow’’ a
‘‘fast’’ variables in Eq.~6!, we introduce new transverse co
ordinates~see Fig. 1!

q5r2 , q05r20, ~7a!

n5r12r2 , n05r102r20, ~7b!

where q is the coordinate of an undisturbed reference r
while the difference vector coordinaten describes the dis
turbed ray displacement with respect to the reference
trajectory. We note that the transformations in Eq.~7! are
nonsymmetric with the respect to the original coordinatesr1
and r2 . This asymmetry allows to preserve the phase inf
mation caused by the changes in the refractive index al
the propagation path. Applying these transformations le
to the following equation for the function
P(n,q,sun0 ,q0 ,s0)5F(n1q,q,sun01q0 ,q0 ,s0):

]P~n,q,sun0 ,q0 ,s0!

]s
5

i

k
“n•“qP~n,q,sun0 ,q0 ,s0!

2
i

2k
¹q

2P~n,q,sun0 ,q0 ,s0!

1 ikn~n1q,s!

3P~n,q,sun0 ,q0 ,s0!, ~8!

with the source condition

P~n,q,s0un0 ,q0 ,s0!5d~n1q2n02q0!u0~q!. ~8a!

To justify our approximations, we emphasize the expli
dependence of the refractive indexn(r,s)5ñ(r/l ,s/l ),
where l is a characteristic spatial scale of the medium
fluctuations~it can be associated with the correlation lengt!.
Such scaling allows us to introduce a small expansion
rameter«51/(kl ), which is of the order of a single scatte
06661
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ing angle. To obtain an approximate solution, generally,
can employ the multiscale expansion procedure as develo
on the previous works and applied to similar equations w
distinct ‘‘fast’’ and ‘‘slow’’ variables. Instead of performing
scaling of the variables, we will perform here a formal e
pansion into powers of inverse wave numberk21.

The common way of solving Eq.~8! is to transform the
function P(n,q,sun0 ,q0 ,s0) from the domain described b
the n-q coordinates to the phase-spacen-r. The function
P̄(n,r,sun0 ,r0 ,s0) is defined as a spectral transform:

P̄~n,r,sun0 ,r0 ,s0!5S k

2p D 2E E
2`

`

dqdq0

3P~n,q,sun0 ,q0 ,s0!

3exp$2 ik@r•q2r0•q0#%. ~9!

Applying this transform to Eq.~8!, we obtain equation for
P̄(n,r,sun0 ,r0 ,s0):

]P̄~n,r,sun0 ,r0 ,s0!

]s
1r•“nP̄~n,r,sun0 ,r0 ,s0!

2 iknS n1
i

k
“r ,s D P̄~n,r,sun0 ,r0 ,s0!

5
ikr2

2
P̄~n,r,sun0 ,r0 ,s0!. ~10!

Expanding the functionn@n1( i /k)“r ,s# into powers of
k21 we obtain for the main order the following equation:

]P̄~n,r,sun0 ,r0 ,s0!

]s
1r•“nP̄~n,r,sun0 ,r0 ,s0!

1“n n~n,s!•“rP̄~n,r,sun0 ,r0 ,s0!

5
ikr2

2
P̄~n,r,sun0 ,r0 ,s0!

1 ikn~n,s!P̄~n,r,sun0 ,r0 ,s0!. ~11!

We note that Eq.~11! is a nonhomogeneous partial differe
tial equation. In the homogeneous case, i.e., when the r
hand side is equal to zero, this equation is similar to
transport equation for the Wigner function in the geomet
approximation.

The easiest way of solving Eq.~11! is by choosing the
reference source as a plane wave. Such a choice leads t
following source condition for~11!:

P̄~n,r,s0un0 ,r0 ,s0!5~2p/k!2d~r2r0!

3exp$ ikr0•~n2n0!%. ~12!

Equation~11! is a first-order partial differential equation an
can be solved by the method of characteristics. The cha
teristic equations are given by the following system:
7-3
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dn

ds
5r, n~s!5n, ~13!

dr

ds
5“n n~n,s!, r~s!5r, ~14!

dP̄

ds
5

ikr2

2
P̄1 ikn~n,s!P̄. ~15!

Solving Eqs. ~13! and ~14! we obtain the characteristic
nf(z) and rf(z) as functions of the range coordinatez,
where the boundary valuesn and r are specified at the ob
servation planes. Actually, when the boundary condition
for n andr are determined at the observation plane we
expressnf(z) by

nf~z!5n2E
z

s

djr f~j!. ~16!

Using these solutions in Eq.~15! leads to

P̄~n,r,sun0 ,r0 ,s0!

5P̄„nf~s0!,rf~s0!,s0un0 ,r0 ,s0…

3expS ik

2 E
s0

s

dz r f
2~z! D

3expH ikE
s0

s

dz ñS n2E
z

s

dj rf~j!,z D J .

~17!

Applying the inverse transform to Eq.~17! with the initial
condition~8a!, and performing the integration with respect
the r0 variable, we obtain

P~n,q,sun0 ,q0 ,s0!

5S k

2p D 2E E
2`

`

dr expH ikrf~s0!•Fn

2E
s0

s

dj rf~j!2n0G J
3exp$ ik@r•q2rf~s0!•q0#%expS ik

2 E
s0

s

dz r f
2~z! D

3expH ikE
s0

s

dz ñS n2E
z

s

dj rf~j!z D J . ~18!

Finally, we setq50, q050, n5r, andn05r0 . According to
the definitions ~7!, the reference plane wave propaga
along a straight line connectingq50 and q050. Then, ex-
tracting the unit value plane-wave solution, we arrive at
expression for the field propagator:
06661
n

s

e

g~r,sur0 ,s0!5S k

2p D 2E E
2`

`

dr expH ikrf~s0!•F r

2E
s0

s

dj rf~j!2r0G J expS ik

2 E
s0

s

dz rf
2~z! D

3expH ikE
s0

s

dj ñ„r f~z!,z…J ~19!

with

r f~z!5r2E
t

s

dj rf~j!. ~20!

Equation~20! represents the desired reference-wave solut
For its application in practical cases one has to develo
procedure for the averaging of the quantities in the integra
Analyzing Eqs.~19! and ~20! we note that, in general, th
expression for the field propagator is not symmetric w
respect to ther andr0 coordinates. The solutions of the cha
acteristic equations require the boundary condition forr to
be set at the range planes. Since, in principle, both coordi-
natesr and r0 have to appear in Eq.~19! symmetrically, we
can write an equivalent expression for the field propaga
when the characteristic equations are solved subject to
boundary conditions at thes0 plane, replacing Eq.~20! by

r f~z!5r01E
s0

z

dj rf~j!, ~21!

and ther integration to the integration overr0 . The expres-
sion for the field propagator can be simplified in some cas
Specifying the boundary values forr f(z) and rf(z) at the
observer and solving the characteristic equations for the
erage values, we obtain straight ray trajectories:

r f~z!5r1r~s2z!, rf5r, ~22!

which can be used in Eq.~19!, leading to the approximate
solution for the field propagator:

g~r,sur0 ,s0!5S k

2p D 2E E
2`

`

dr exp@ ikr•~r2r0!#

3expH 2
ikr2~s2s0!

2
1 ik

3E
s0

s

dz n„r1r~s2z!,z…J . ~23!

The expression in Eq.~23! is equal to the phase approxima
tion of the Huygens-Kirchoff Method@13#. This solution has
been obtained phenomenologically, and, as is well kno
has limited applicability in the analysis of higher-order co
relation measures. In order to make more suitable appr
mations, we propose that some of the deficiencies of th
phenomenological solutions arise because of the violation
the uncertainty principle, when in the straight ray trajector
7-4
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the slope and the position of the ray are stated simu
neously in the same range plane.

In order to include such an uncertainty in the descript
of the high-frequency propagation process there is a need
the choice of a proper pair of coordinates related to the s
tial location and to the slope of geometrical ray trajectori
The above quantities can be introduced analytically into
field measures only if one considers a higher dimensio
space. For that reason, we define a paired field mea
called a two-point function~TPF!

G~p,s,s!5uS p1
s

2
,s Du* S p2

s

2
,s D , ~24!

where

p5
r11r2

2
, s5r12r2 ~25!

are transverse sum and difference coordinates~see Fig. 2!.
The TPF propagator is a product of field propagators deri
in Eq. ~20!:

g2~p,s,sup0 ,s0 ,s0!5gS p1
s

2
,sUp01

s0

2
,s0Dg* S p

2
s

2
,sUp02

s0

2
,s0D . ~26!

We substitute the expression~20! for g into Eq. ~26!, and
introduce two new coordinate functions, which are line
combinations ofnf 1 andnf 2

pf~z!5
r f 1~z!1r f 2~z!

2
, sf~z!5r f 1~z!2r f 2~z!, ~27!

and linear combinationsrf 1 andrf 2 of the spectral variables
appearing in each product term:

rf~z!5
rf 1~z!1rf 2~z!

2
, hf~z!5rf 1~z!2rf 2~z!.

~28!

Performing the change of variables according to

r5
r11r2

2
, h5r12r2 , ~29!

we obtain explicitly

g~p,s,sup0 ,s0 ,s0!5S k

2p D 4E ¯E
2`

`

dr dh

3exp$ ikhf~• !• bpf~• !2p0c%

3expH ikE
s0

s

dzhf~z!•rf~z!J
3exp$ ikrf~• !•@sf~• !2s0#%
06661
-

n
for
a-
.
e
al
re

d

r

3expH ikE
s0

s

dzFnS pf~z!1
sf~z!

2
,z D

2nS pf~z!2
sf~z!

2
,z D G J . ~30!

pf(z) andsf(z) are solutions of the following characterist
equations that can be easily obtained from Eqs.~13! and~14!
~see the Appendix!:

dp

ds
5r, ~31a!

dr

ds
5“rn~p,s!, ~31b!

ds

ds
5h, ~31c!

dh

ds
5 1

2 $“p•@“pn~p,s!•s#1@¹p
2n~p,s!s#%. ~31d!

Taking into account the symmetry relations, we note that
functionspf(z) andsf(z) can be the solutions of the chara
teristic equations solved subject to the boundary conditi
either at the range planes or s0 . It was shown previously
that the uncertainty relations play an important role in der
ing the approximate solutions of TPF@14#. To account for the
ray uncertainty, we define the Wigner distribution function

W~p,r,s!5S k

2p D 2E E
2`

`

dsG~p,s,s!exp~ ikr•s!,

~32!

and ambiguity function

A~h,s,s!5E E
2`

`

dpG~p,s,s!exp~2 ikh•p!. ~33!

If the source condition is defined by the Wigner distributio
the TPF at the observer is obtained by the following pro
gation relation:

G~p,s,s!5E E
2`

`

dp0dr0W~p0 ,r0 ,s0!

3gW~p,s,sup0 ,r0 ,s0!, ~34!

where the propagatorgW is defined by

gW~p,s,sup0 ,r0 ,s0!5S k

2p D 2E E
2`

`

ds0

3g2~p,s,sup0 ,s0 ,s0!exp~ ikr0•s0!

~35!

and in an explicit form can be presented as
7-5
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g~p,s,sup0 ,r0 ,s0!

5S k

2p D 4E ¯E
2`

`

dr dhd„r02rf~s0!…

3exp$ ikrf~• !•sf~• !%

3expH ikhf~• !•Fp2E
s0

s

dz rf~z!2p0G J
3expH ikE

s0

s

dz hf~z!•rf~z!J
3expH ikE

s0

s

dzFnS pf~z!1
sf~z!

2
,z D

2nS pf~z!2
sf~z!

2
,z D G J . ~36!

The presence of thed function in the integrand of Eq.~36!
states a requirement that the boundary condition for the s
r has to be set at the initial planes0 . Therefore, at the sam
plane we have to set the boundary condition for the funct
pf(z), and the solution for thepf(z) trajectory subject to
these boundary conditions is expressed as@15#

pf~z!5p01E
s0

z

r~ t !dt, r~s0!5r0 . ~37!

In the case when the Wigner distribution at the source pl
creates the ambiguity function at the observation plane,
propagation relation is given by

A~h,s,s!5E E
2`

`

dp0dr0W~p0 ,r0 ,s0!

3gWA~h,s,sup0 ,r0 ,s0!, ~38!

with the propagator obtained by applying to Eq.~36! the
spectral transform over thep variable:

gWA~h,s,sup0 ,r0 ,s0!

5S k

2p D 4E ¯E
2`

`

dr dhd„r02rf~s0!…

3d„hf~s!2h…exp$ ikrf~• !•sf~• !%

3expH ikhf~• !•Fp2E
s0

s

dzrf~z!2p0G J
3expH ikE

s0

s

dzhf~z!•rf~z!J
3expH ikE

s0

s

dzFnS nf~z!1
sf~z!

2
,z D

2nS nf~z!2
sf~z!

2
,z D G J . ~39!
06661
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n

e
e

We note that the propagatorgWA relates two different
configuration-spectral spaces. For the further approxima
we replace the ray trajectories in Eq.~31! by their average
values. The resulting solutions are straight trajectories. Us
them in Eq.~38! and performing inverse transforms we a
rive at the result derived by the multiscale expansion pro
dure @8,9#:

g~p,s,sup0 ,ss0 ,s0!

5S k

2p D 2E ¯E
2`

`

dr0dh exp$ ikh•@p2p02r0

3~s2s0!#%exp$ ikr0•~s2s0!%

3expH ikE
s0

s

dzFnS p1r0~z2s0!1
s

2
1

n~z2s!

2
,z D

2nS p1r0~z2s0!2
s

2
2

n~z2s!

2
,z D G J . ~40!

The ray uncertainty in the propagators~38! and ~39! is ac-
counted for by considering different phase-space configu
tions in the source and observation planes. We empha
however, that even if the trajectories in Eq.~39! are replaced
by the straight rays, these are not the same rays. The slop
the rays from the source is different to the ray slopes
proaching the observer. For example, the radiation emana
from the source coordinatep0 along the rays centered aroun
the sloper0 creates at the observation plane the distribut
characterized by transverse separations created by indepen
dent rays having slope differencesh. Physically, this ap-
proximation accounts for the scattering of the propagat
rays.

III. SUMMARY AND DISCUSSION

In this paper, we have formulated a reference-wa
method applied to solve the parabolic-type wave equat
Using this method we presented solutions for the propag
governing the transport of the high-frequency field along
properly chosen deterministic ray trajectory in a random
perturbed medium. We restricted ourselves to a medium h
ing a homogeneous background profile, but the extensio
an arbitrary background case seems to be straightforw
The desired field solution in the general case is presente
a spectral integral over various spectral contributions pro
gating along random ray trajectories. Approximating the
trajectories by average trajectories leads to the well-kno
phase approximation of the Huygens-Kirchoff method. F
ther, we used our solution in the construction of the pai
field measures associated with the coherence functions o
field. We have shown that uncertainty considerations play
important role in the construction of the statistical propag
tion characteristics. In order to account for the uncertainty
the high-frequency propagation there is a need to choo
proper pair of coordinates related to the spatial location
to the slope of geometrical ray trajectories. The above qu
tities can be introduced into the propagation process ana
cally only by considering a higher dimensional space, wh
7-6
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allows us to transfer it to mixed configuration-phase-sp
quantities. As a starting point we defined a paired field m
sure called the two-point random function and its spec
transforms known as Wigner and ambiguity functions. W
have shown that the ray uncertainty can be retained e
while replacing the multiple trajectories by straight ray tr
jectories if one considers propagation between differ
configuration-spectral spaces. In this case our result lead
solutions that correctly represent intensity correlation ch
acteristics. The result, as is shown, is equal to that obta
by the two-scale expansion method. These propagators
extensively applied for construction of various statistical m
ments and calculations of the statistical characteristics
high-frequency fields propagating in random media@9#. The
fact that these propagators preserve the random informa
accumulated along the propagation paths, makes them
able also for the analysis of the intensity enhancement
localization effects@8,9,14#.

The further extension of the solutions presented in t
work would be the development of an averaging proced
and construction of the statistical measures directly from
solutions of the propagating field itself, and not from t
paired products. This will allow us to solve a number
problems not accessible before, among them analysis o
field localization effects, obtaining expressions for the m
tifrequency coherence functions and performing the anal
of pulsed signal propagation. First results in this direct
have already been obtained@12#.
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APPENDIX: RAY-TRACING EQUATIONS

Here we will derive the ray-tracing equations for the va
able p and s defined by Eqs.~31! of the main text. Let us
rewrite the ray-tracing Eqs.~13! and~14! for the coordinates
ni and the slopesri , i 51, 2:

dni

ds
5ri , ~A1!

dri

ds
5“ni

n~ni ,s!. ~A2!

Next we define new sum and difference coordinates
e

l
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p5
n11n2

2
, s5n12n2 , ~A3!

and the slopes

r5
r11r2

2
, h5r12r2 . ~A4!

Taking the sum and difference of~A1! and~A2! according to
~A3!, we obtain equations forp ands:

dp

ds
5r, ~A5!

dr

ds
5

1

4

]

]p FnS p1
s

2
,s D1nS p2

s

2
,s D G

1
1

2

]

]sFnS p1
s

2
,s D2nS p2

s

2
,s D G , ~A6!

ds

ds
5h. ~A7!

dh

ds
5

1

2

]

]p FnS p1
s

2
,s D2nS p2

s

2
,s D G

1
]

]sFnS p1
s

2
,s D1nS p2

s

2
,s D G . ~A8!

Next, according to the spirit of the expansions performed
the main text, we replaces by s/k. andh by h/k, and expand
the functions in~A5!–~A8! into the inverse powers ofk.
Retaining only the main order terms, we arrive at the follo
ing set of equations:

dp

ds
5r, ~A9!

dr

ds
5“rn~p,s!, ~A10!

ds

ds
5h, ~A11!

dh

ds
5 1

2 $“p•@“pn~p,s!•s#1@¹p
2n~p,s!s#%, ~A12!

which represent Eqs.~31a!–~31d! of the main text.
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